Biophysical approaches promote advances in the understanding of von Willebrand factor processing and function.
نویسندگان
چکیده
The large multimeric plasma glycoprotein von Willebrand factor (VWF) is essential for primary hemostasis by recruiting platelets to sites of vascular injury. VWF multimers respond to elevated hydrodynamic forces by elongation, thereby increasing their adhesiveness to platelets. Thus, the activation of VWF is force-induced, as is its inactivation. Due to these attributes, VWF is a highly interesting system from a biophysical point of view, and is well suited for investigation using biophysical approaches. Here, we give an overview on recent studies that predominantly employed biophysical methods to gain novel insights into multiple aspects of VWF: Electron microscopy was used to shed light on the domain structure of VWF and the mechanism of VWF secretion. High-resolution stochastic optical reconstruction microscopy, atomic force microscopy (AFM), microscale thermophoresis and fluorescence correlation spectroscopy allowed identification of protein disulfide isomerase isoform A1 as the VWF dimerizing enzyme and, together with molecular dynamics simulations, postulation of the dimerization mechanism. Advanced mass spectrometry led to detailed identification of the glycan structures carried by VWF. Microfluidics was used to illustrate the interplay of force and VWF function. Results from optical tweezers measurements explained mechanisms of the force-dependent functions of VWF's domains A1 and A2 and, together with thermodynamic approaches, increased our understanding of mutation-induced dysfunctions of platelet-binding. AFM-based force measurements and AFM imaging enabled exploration of intermonomer interactions and their dependence on pH and divalent cations. These advances would not have been possible by the use of biochemical methods alone and show the benefit of interdisciplinary research approaches.
منابع مشابه
Frequency Assessment of the H817Q (2451T→A) Variant of von Willebrand Gene in Individuals without Hemorrhagic Signs
Abstract Background and Aims: Von Willebrand disease is a bleeding disorder caused by quantitative or functional defects in von Willebrand factor. The disease is found in up to 1 percent of the population. The most common symptom is mucocutaneous bleeding. Recently, studies conducted on healthy people showed that the H817Q mutation that previously known to cause von Willebrand...
متن کاملGenetic Variations in Exon 3 of VWF Gene in Patients with Von Willebrand Disease (VWD) from South-West Iran
Abstract Background Von Willebrand disease (VWD) is an autosomally inherited bleeding disorder with the prevalence of 1% based on population studies. The disease phenotype is due to quantitative and structural/functional defects in Von Willebrand Factor (VWF) which is a glycoprotein with essential role as a carrier of FVIII in circulation and also it serves the function as hemostasis regulato...
متن کاملMultiple Sclerosis Diagnosed in a Woman With Von-Willebrand Disease: A Case Report
Background: Von-Willebrand Disease (VWD) is the most common inherited bleeding disorder with an autosomal inheritance pattern. Multiple Sclerosis (MS) is a neurological disease, causing neurodegeneration and demyelination of the central nervous system through autoimmune mechanisms, and is a major cause of non-traumatic disabilities in youths. Some studies have shown the higher plasma activity o...
متن کاملImmunotherapy for thrombotic thrombocytopenic purpura.
PURPOSE OF REVIEW This review focuses on recent advances in the use of immune-based therapy to treat patients with refractory and relapsing acquired thrombotic thrombocytopenic purpura. RECENT FINDINGS Advances in understanding of the pathophysiology of idiopathic thrombotic thrombocytopenic purpura have provided the rationale for immune-based treatment approaches to refractory and relapsing ...
متن کاملThe role of exon 45 and 16 in the pathogenesis of Von Willebrand disease in Iranian Patients
Abstract Background Von Willebrand disease (VWD) is an autosomal recessive congenital bleeding disorder with deficiency or dysfunction of von Willebrand factor (VWF). The gene encoding for the VWF is located on chromosome 12, which is 178 Kb with 52 exons. Various mutations of this gene is responsible for the clinical features of VWD, but some single nucleotide polymorphisms make the molecu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advances in biological regulation
دوره 63 شماره
صفحات -
تاریخ انتشار 2017